P3.11-6) An airplane flying horizontally at an altitude of h=3 miles is being tracked by a radar station on the ground as shown. The radar's tracking data shows that $\dot{\theta}=0.01$ rad/sec and $\ddot{\theta}=-0.05$ rad/sec² when θ equals 60°. Determine the airplane's velocity and acceleration at this instant.

	P3.11-6						
cceleration. eleration equation in ates.							
S	acceleration in the						
	acceleration in the						

Given:

F	i	n	Ч	ŀ

Solution:

Write	down	the	velocity	equation	in	terms	of
polar	coordi	nate	es.				

v =

What is r as a function of θ .

r = _____

Calculate r when $\theta = 60^{\circ}$.

 $r_{\theta=60} =$ ______

Calculate the plane's velocity in the θ -direction.

 $v_{\theta} =$

Calculate the plane's velocity in the r-direction. This can be done using geometry or by taking the derivate of r with respect to time.

 $v_r =$

v =

Derive the plane's acceleration

Write down the acceleration equation in terms of polar coordinates.

a = _____

Calculate the plane's acceleration in the θ -direction.

 a_{θ} = _____

Calculate the plane's acceleration in the r-direction. This can be done using geometry or by taking the second derivate of r with respect to time.

 $a_r =$

a = _____