P3.11-6) An airplane flying horizontally at an altitude of h=3 miles is being tracked by a radar station on the ground as shown. The radar's tracking data shows that $\dot{\theta}=0.01$ rad/sec and $\ddot{\theta}=-0.05$ rad/sec² when θ equals 60°. Determine the airplane's velocity and acceleration at this instant. | | P3.11-6 | | | | | | | |--|---------------------|--|--|--|--|--|--| | cceleration. eleration equation in ates. | | | | | | | | | S | acceleration in the | | | | | | | | | acceleration in the | | | | | | | ## Given: | F | i | n | Ч | ŀ | |---|---|---|---|---| ## Solution: | Write | down | the | velocity | equation | in | terms | of | |-------|--------|------|----------|----------|----|-------|----| | polar | coordi | nate | es. | | | | | v = What is r as a function of θ . *r* = _____ Calculate r when $\theta = 60^{\circ}$. $r_{\theta=60} =$ ______ Calculate the plane's velocity in the θ -direction. $v_{\theta} =$ Calculate the plane's velocity in the r-direction. This can be done using geometry or by taking the derivate of r with respect to time. $v_r =$ v = ## Derive the plane's acceleration Write down the acceleration equation in terms of polar coordinates. a = _____ Calculate the plane's acceleration in the θ -direction. a_{θ} = _____ Calculate the plane's acceleration in the r-direction. This can be done using geometry or by taking the second derivate of r with respect to time. $a_r =$ *a* = _____